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1. Introduction

Ongoing experiments at RHIC are exploring the QCD plasma, achieving initial tempera-

tures which exceed the QCD phase transition (or crossover) temperature. Since the ions are

large compared to the intrinsic QCD scale, they create a “macroscopic” sample of plasma,

which allows the exploration of QCD at these temperatures in its hydrodynamic regime.

The experimental program indicates that at central rapidities the plasma indeed behaves

hydrodynamically, developing rather large radial and elliptic flows [1]. Viscous hydrody-

namic analyses [2] only describe the observed elliptic flow well if the viscosity is very small,

η/s < 0.3. Radial flow is caused by outward pressure accelerating the outer layers of the

“fireball” radially. It builds up through the whole history of the fireball expansion until the

hadrons become too dilute to interact. It is therefore sensitive to the whole time history

of the plasma after the collision. It is sensitive to the equation of state, since this sets the

relation between pressure and energy density. It should also be sensitive to bulk viscosity.

The definition of bulk viscosity is a drop in the pressure, relative to the equilibrium value

at the same energy density, due to expansion:

P = Pequil. − ζ∇·v (1.1)

with v the flow velocity and ζ the bulk viscosity (and with all variables measured in the

instantaneous local rest frame). Since the bulk viscosity reduces the outward pressure, it

lowers the amount of radial flow. Of course, under a single set of experimental conditions

the bulk viscosity may approximately mimic a modification in the equation of state; but

comparing collisions of different centralities or of different sized nuclei, for which ∇·v will

vary, it should in principle be possible to isolate bulk viscosity from the equation of state.

At high temperatures where the coupling is weak and the theory is nearly conformal,

the bulk viscosity is expected to be small [3 – 5]. Near the phase transition or crossover,

however, it may be appreciable. This has encouraged a recent reanalysis of the bulk

viscosity in QCD. In particular, Kharzeev and Tuchin have recently argued [6] that the

bulk viscosity can be determined from lattice results for the equation of state (particularly

– 1 –



J
H
E
P
0
9
(
2
0
0
8
)
0
1
5

the temperature dependence of the pressure P and energy density ǫ) by using an exact

sum rule and an Ansatz for the functional form of the spectral function of stress-stress

correlations. And Meyer [7] has performed a (pure-glue) lattice study of the Euclidean T µ
µ

correlation function, with a view towards an analytic continuation of the lattice data to

determine the real-time spectral function and in particular the bulk viscosity.

Using Euclidean data to reconstruct real-time correlation functions is in general ill-

posed without some assumptions about the shape of the real-time correlation function.

Therefore we feel that it is useful to learn whatever we can about the spectral function for

T µ
µ in whatever regimes analytic information is available. We have found two such regimes.

At weak coupling (high temperature) we can compute the spectral function perturbatively.

And near a second order phase transition (such as probably occurs in realistic QCD at

some point in the T–µ plane), we can make reliable statements about scaling behaviors

based on universality arguments. The latter case may be of importance for real-world

QCD; if the critical point is close enough to the temperature axis, heavy ion collisions may

explore a near-critical crossover, with long correlation lengths and sensitive T dependence

of thermodynamical variables.

As discussed above, the bulk viscosity is defined as a deviation of the pressure P = 1
3T

i
i

from its equilibrium value due to expansion. The operator which generates expansion of

the system is also 1
3T

i
i , and as Kubo showed, one can treat a slowly expanding system by

coupling this operator to an external source. The bulk viscosity is determined as the linear

response of the operator 1
3T

i
i to such an external source [8]:

ζ =
1

2
lim

ω→0+

1

ω

∫ ∞

−∞
dte−iωt

∫

d3x
〈[

1
3T

i
i (x, t) ,

1
3T

i
i (0, 0)

]〉

. (1.2)

Because the energy
∫

d3xT 00 is conserved, it is harmless to shift T i
i by the energy or any

multiple of the energy in the above. Two useful choices are k such that 〈T i
i + kT 0

0 〉 = 0

(so the operator we use has vanishing expectation value) and k = 1, so the correlator is

replaced with a correlator of T µ
µ .1

The purpose of this paper is to analyze the spectral function

ρ(ω) ≡

∫

dte−iωt

∫

d3x
1

9

〈[

T µ
µ (x, t) , T ν

ν (0, 0)
]〉

(1.3)

both in the weak coupling regime and close to the phase transition point, focusing on low

frequencies. The bulk viscosity is determined by ζ = 1
2 limω→0 ρ(ω)/ω. Section 2 exam-

ines the perturbative regime, generalizing the bulk viscosity calculation of [5] to nonzero

frequencies. We show that ρ/ω has a peak at zero frequency of height O(α2
sT

3) and area
∫

dωρ/ω ∼ α
7/2
s T 4. Both the width and area under the peak contradict the Kharzeev-

Tuchin study [6]. Section 3 studies the spectral function and bulk viscosity near a second

order phase transition. Drawing on work by Onuki [9], we argue that the bulk viscosity

shows a power divergence as the critical point is approached; along the crossover line a

distance t in the T, µ plane from the critical point, ζ ∝ t−zν+α, with ν = .630 the scaling

1We use [−+++] metric conventions.
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exponent for the correlation length, α = .110 the critical exponent for the heat capacity,

and z ≃ 3 the dynamical critical exponent. Again, this corresponds to a sharp peak in

ρ/ω near zero frequency. This result contradicts ref. [10]. We end with a discussion section

in which we examine the implications of our results for the program of determining the

spectral function via analytic continuation of Euclidean data.

2. Spectral function at weak coupling

For simplicity we will consider only pure glue QCD here; the behavior of QCD with

quarks of negligible mass is more complicated but qualitatively the same. The trace of

the stress tensor is the generator of dilatations, which are a classical symmetry of the the-

ory. However this symmetry is broken at the quantum level: under dilatations the action

S =
∫

d4x 1
2g2 Tr GµνG

µν changes because the inverse gauge coupling 1/2g2 changes by

−β/g4, with β = µ2d
dµ2 g

2 ∼ g4 the beta function for the coupling g2. Therefore T µ
µ can be

replaced with T µ
µ → β

g4 TrG2 the square of the field strength [11]. The correlation function

eq. (1.3) is therefore 4β2/g4 times the correlation of the Lagrangian density with itself.

The spectral function is related to the Wightman function by a KMS relation:

G>(ω) ≡

∫

dte−iωt

∫

d3x
1

9

〈

T µ
µ (0, 0)T ν

ν (x, t)
〉

conn
,

G>(ω) =
1

1 − e−ω/T
ρ(ω) . (2.1)

It is convenient to shift the operator T µ
µ by a multiple of T 0

0 such that its expectation value

vanishes, so that the connected correlation function is the same as the full correlation

function. In our case this means that we need to work not in terms of T µ
µ but in terms

of O ≡ T µ
µ − T 0

0 〈T
ν
ν 〉/〈T

0
0 〉 ≃ T i

i + 3v2
sT

0
0 , with vs the speed of sound. This shift to the

operator is O(g4) and will only be important for some terms in what follows. In fact

the only difference between using O and using T µ
µ is that the T µ

µ correlation function

will have an extra delta function strictly at zero frequency and of height equal to the

energy susceptibility (heat capacity) times (〈T µ
µ 〉/〈T 0

0 〉)
2. The Wightman correlator for O

is missing this delta function; its value at ω = 0 is 2T times the bulk viscosity.

Perturbatively the leading contribution to this correlation function is that of figure 1.

This gives rise to a leading order contribution (defining2 Q = (ω, 0)) of

G>(Q) =
2β2(g)dA

9g4

∫

d4P d4R

(2π)4
δ4(Q−P−R) G>

µα(P )G>
νβ(R)

×(gµνP ·R−PµRν)(gαβP · R−PαRβ) , (2.2)

where dA = N2
c −1 is the dimension of the group. Note that both gauge boson propagators

are Wightman (cut) propagators, given by

G>
µν(P ) = [nb(p

0)+1] 2πδ(P 2+m2)
∑

λ

ǫµ(λ)ǫ∗ν(λ) , (2.3)

2Capital letters are 4-vectors; lower case are their spatial components.
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Figure 1: Graph which dominates G2–G2 correlations at weak coupling. The × symbols represent

the G2 operator insertions.

with λ the polarization state; ǫµP
µ = 0. The use of massive dispersion relations3 accounts

for forward scattering in the plasma; the plasma mass is m2 = m2
D/2 = g2NcT

2/6. Since

we are working perturbatively, we will treat m2
D ≪ T 2 the energy scale of typical quasipar-

ticle excitations and we will ignore longitudinal gluons, which have an exponentially small

spectral weight for p0 ∼ T [12].

There are two contributions to G>(Q), corresponding to the two ways the conditions

δ4(Q−P−R)δ(P 2+m2)δ(R2+m2) can be satisfied at vanishing q. Since |p| = |r|, we have

p0 = ±q0. The contribution where p0 = r0 = ω/2 gives rise to a continuous contribution,

corresponding to a cut in the retarded function:

G>
cut =

[

nb

(

ω

2

)

+ 1

]2 2β2(g)

9g4

2dA ω
4

32π
∝ g4ω4 . (2.4)

Here 2dA is the number of color and spin states of gluons. For this contribution, the

difference between O and T µ
µ is an O(g2) correction and can be neglected. The parametric

behavior is simple to understand: g4 arises because the trace anomaly makes T µ
µ naturally

O(g2) and we are computing the correlator of two T µ
µ ’s; and the ω4 behavior follows on

dimensional grounds. Note that for ω < T the behavior changes to g4ω2T 2 because of the

statistical functions, and is further modified below ω ∼ gT .

The other contribution arises when p0 = −r0. This requires ω = 0, and therefore

corresponds to a delta function in the Wightman function (pole in the retarded function).

If we evaluate the correlation function for T µ
µ operators without subtracting disconnected

contributions, we find

G>
pole[inc. disconnected] = δ(ω)

2

9g4

∫

p2dp

4πE2
p

2dA (β P 2)2 nb(p
0)[1+nb(p

0)] . (2.5)

This would vanish were it not for dispersion corrections for hard gluons, mentioned above:

P 2 = −m2 = −m2
D/2 ∼ g2T 2. Inserting this estimate and taking p ∼ T , one finds that the

delta-function contribution naively scales as g8T 5δ(ω), with the g8 arising as two powers

of g2 from the beta functions and two powers of g2 because of the dispersion relations.

Since this extra g4 suppression may come as a surprise for some readers, we will

pause to discuss its physical origin. Physically, at zero frequency and momentum the

3We use [−+++] metric convention
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T µ
µ ∝ GµνGµν operator is probing thermal excitations without disturbing them. A massless

gauge excitation has equal E2 and B2, and therefore GµνGµν = B2 − E2 vanishes for an

undisturbed, propagating gauge boson. It is only because of plasma dispersion corrections,

which allow E2 6= B2, that the cancellation is not exact. Therefore the pole contribution

“wants” to vanish for two reasons; the smallness of the beta function, contributing β2/g4 ∼

g4, and the smallness of dispersion corrections, yielding (B2 − E2)2 ∼ (g2)2 ∼ g4.

However there are some complications in evaluating this contribution. First, βP 2 =

−βm2 is the same order as 〈T µ
µ 〉. Therefore the result above is contaminated by discon-

nected parts, and we should evaluate the correlation function using the operator O defined

above. This amounts to the substitution −βm2 → (v2
s − 1

3)p2 − βm2. The contribution to

the Wightman correlator is approximately

G>
pole = δ(ω)

2

9
2dA

1

4π

∫ ∞

0
n(p)(1 + n(p))

[(

1

3
− v2

s

)

p2 +
βm2

D

2g2

]2
p2 dp

E2
p

. (2.6)

The next complication is that this integral is infrared singular, indicating that the “pole”

contribution to the Wightman function is dominated by soft physics. This happens because

B2 and E2 come further from canceling as one considers more infrared, and therefore more

dispersion-corrected, excitations. The infrared singular, ∼
∫

dp/p2, behavior is cut off at

the scale p ∼ gT , where E2
p deviates strongly from p2. A complete treatment of this regime

requires a detailed analysis using Hard Thermal Loop (HTL) effective theory [12] and we

will not attempt it here. However we can easily see that the linear divergence, cut off at

the gT scale, reduces by 1 the power of g appearing in the height of the “delta function”

contribution, such that
∫ gT
−gT dωG

>(ω) ∼ g7T 5. Physically, this is because, in the soft

p ∼ gT region, there is no relation between E2 and B2, so the extra g4 suppression found

above is absent for such excitations; however they represent only a g3 fraction of the energy

density, leading to a delta function contribution ∼ g3 × g4 ∼ g7 (the g4 still arising from

the square of the beta function).

The last complication is that the “delta function” we just found is not really of zero

width; interactions broaden it into a sharp peak. Since the bulk viscosity is determined

by the height of this peak, we need to determine its shape. Interactions mean that the

delta-function behavior found above receives corrections. The delta function arises from

integrating over all (thermal) momenta which can run in the loop in figure 1. Very roughly,

interactions mean that each particle running in the loop contributes not a delta function

but a Lorentzian of the same area, with width Γ set by the large angle or large momentum

change scattering rate for this particle. The width Γ is momentum dependent and is

parametrically Γ ∼ g4T 3/p2 (see [13] for a discussion of the relevant scattering processes).

Therefore, although soft p ∼ gT particles dominate the area of the peak, it is hard p ∼ T

particles which dominate its height, since they have narrower widths. At frequency g2T ≫

ω ≫ g4T the dominant p is p ∼ T (g4T/ω)1/2. The correlation function is parametrically

G>(ω) ∼

{

g4T 4 , ω <∼ g4T

g6T 4
√

T/ω , g2T ≫ ω ≫ g4T
. (2.7)

– 5 –
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Figure 2: Wightman correlators at small frequency for the operators T µ
µ (relevant for bulk

viscosity) and Tij −
δij

3
Tkk (relevant for shear viscosity) for Nc = 3 pure glue QCD at weak coupling

(and setting mD = 1.5T ). The “peak” in the bulk correlation function is wider and has much larger

“shoulders,” as discussed in the text.

For ω >∼ g2T contributions from the Landau cut and higher order diagrams cannot be

neglected. We will not attempt to address this region here.

We can make this estimate more precise by extending the results on bulk viscosity [5]

(strictly zero ω) to treat ω ∼ g4T using the approach of ref. [14]. The idea is that the

correlator G>(ω) for ω ≪ g2T is essentially determined by kinetic theory, that is, by solving

a Boltzmann equation. For a detailed diagrammatic justification for this fact (in the context

of scalar field theory) see [4]. The Boltzmann equation can be solved variationally using the

tools developed in ref. [15] for zero frequency and applied to bulk viscosity in [5]. Ref. [14]

showed how to extend these tools from zero to small frequency in the context of current-

current correlation functions, and there is no problem doing so for stress tensor correlation

functions too. The computed shape of the correlator G>(ω) ≃ Tρ(ω)/ω for ω ∼ g4T is

displayed in figure 2, which also compares the shape of the “peak” in the T µ
µ correlation

function to the peak in the shape of the Tij −
δij

3 Tkk correlation function relevant for shear

viscosity. Besides the parametrically large difference in the heights of the peaks (already

discussed above), the figure shows that the peak in the Tij correlator is much narrower,

more closely resembling a Lorentzian. This is because, unlike the T µ
µ correlator, the Tij

correlator is not sensitive to soft excitations.

Let us compare this weak-coupling behavior to that claimed in a recent analysis by

Kharzeev and Tuchin [6]. They derive what they claim to be an exact sum rule showing that

the frequency integral of the spectral function is related to the temperature dependence of

– 6 –
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the energy density and pressure:

Eq. (12) of [6]:

∫ ∞

−∞

ρ(ω)

ω
dω = T 5 ∂

∂T

ǫ− 3P

T 4
+ 16Evac . (2.8)

The vacuum energy contribution can be removed by replacing the spectral function with

its thermal part. They also state that the perturbative contributions should be subtracted,

though it is not clear to us whether this refers to the righthand, lefthand, or both sides of

the relation.

First we analyze the righthand side. At weak coupling and in the absence of quark

masses it has long been known that P scales as T 4 with a coefficient which can be expanded

in powers of g:

P (T ) = T 4 ×
(

A+Bg2[µ]

(

1 +
β

g2
ln
T 2

µ2

)

+ O(g3)
)

. (2.9)

The coefficients A,B are known [16] but their precise values are not important to this

discussion. (In fact the coefficients through order g6 ln(g) are also known [17]). All that

matters to us here is the functional form and that the scale dependence of g2 is set by the

temperature T , which we have shown explicitly in the above by including the O(g4) term

with an explicit log which renders the result µ independent. Using that ǫ = TdP/dT −P =

3P + 2T 4Bβ, one easily finds that

v2
s =

dP

dǫ
=

1

3
−

2B

9A
β + O(g5) ∼ g4 , and

ǫ− 3P

T 4
= 2Bβ ∼ g4 , (2.10)

where the coupling g appearing in the expression for β should be understood as being

evaluated at µ ∼ T . The dominant T dependence is from this renormalization dependence

of g:

Td

dT

ǫ− 3P

T 4
= 2B

Td

dT
β =

8B

g2
β2 ∼ g6 . (2.11)

Therefore a literal interpretation of the righthand side of eq. (2.8) leads to a parametrically

O(g6T 4) result.

On the other hand, we can insert our analytical results for the spectral function into the

lefthand side of eq. (2.8). The nearly-delta function peak gives a contribution of order g7T 4

(see the discussion after eq. (2.6), and use that ρ/ω ≃ G>/T ). The cut contribution, after

subtracting the vacuum contribution,4 is O(g4T 4). Therefore a literal interpretation of both

sides of the equation leads to an inequality. And subtracting the rising cut contribution

does not help, since it changes the l.h.s. from O(g4) to O(g7), not g6. Therefore Kharzeev

and Tuchin’s result can only make sense if some subtraction is implied on both sides of the

equation, in which case it has no utility in the perturbative regime considered here.

4After vacuum subtraction, the leading-order cut contribution decays exponentially. However, subleading

in g2 contributions do not. According to S. Caron-Huot [18], the leading thermal corrections at large ω

scale as ρT ∼ g2ρvac(T/ω)4 both for current-current and stress-stress correlation functions, see also [19, 20].

– 7 –
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Τ

µ

?????

Figure 3: Expected phase structure in the T −µ plane for realistic QCD. Along the T axis there

are no phase transitions, but at finite chemical potential there is a 1’st order transition line which

terminates at an Ising universality class critical point. Criticality can give parametric predictions

for behavior near this point, roughly in the shaded region. At large chemical potential and small

temperature there is a 1’st order transition associated with nuclei and possibly other transitions

associated with color superconductivity, which are not important here.

3. Spectral function near the 2’nd order transition point

There is another regime in which it is possible to say something analytical about the T µ
µ

spectral function. Close to a second order phase transition, low frequency and momentum

correlation functions are dominated by long wavelength fluctuations which obey universal

thermodynamical properties which allow for a scaling analysis. In other words, we can

use universality arguments to determine the functional form of correlation functions, such

as their parametric dependence on the difference between the temperature and the equi-

librium temperature. Furthermore, hydrodynamic arguments make it possible to extend

the universality predictions to dynamical (unequal time) correlation functions, though this

requires some additional information about what quantities are conserved [21].

It is believed that the phase diagram (in the T -µ plane) for realistic QCD with two light

(but not massless) and one fairly light quark flavor possesses a first order phase transition

line which terminates in an Ising universality class second order endpoint [22], as illustrated

in figure 3 (see however [23]). The plasma generated in very high energy heavy ion collisions

is expected to follow a trajectory close to the T axis (small µ), which probably misses the

phase transition line [24] but may nevertheless experience a rather sharp crossover with a

large correlation length. In principle, intermediate energy heavy ion collisions may explore

the critical point [25]. In any case, even if it cannot be directly probed experimentally,

it is interesting to consider the vicinity of the critical point to see what general lessons it

teaches us about T µ
µ correlation functions. Also note that the pure-glue theory is expected

to have a first-order phase transition point [26] but the transition is very weak with a long

correlation length [27] and so scaling arguments might be suggestive here as well (and two

color QCD should have a second order transition in the Ising universality class [26]).

Near the critical point, some linear combinations of the temperature and chemical

– 8 –
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potential map to the temperature and magnetic field variables of the Ising model. Ordinary

fluids also have a phase transition between liquid and gas phases with a critical point in the

Ising universality class. There is also a mapping of the Ising variables to the temperature

and pressure variables of this system, and therefore a mapping between T, µ in QCD and

T, P in the liquid-gas system, as illustrated in figure 4.

We need more information to extend universality arguments to unequal time corre-

lation functions [21]. The long range fluctuations in the order parameter are coupled to

microscopic degrees of freedom which should lead to diffusive (Langevin) dynamics for the

order parameter fluctuations. The order parameter should therefore admit a Ginsburg-

Landau type description, both thermodynamically and dynamically. This leads as usual

to universality in the behavior of static correlation functions between all critical systems

with the same dimensionality and underlying symmetries. But at the level of unequal

time dynamics, the Ginsburg-Landau description must also include any locally conserved

quantities. In particular, in QCD the temperature and chemical potential are dual to en-

ergy density and baryon number density, which are both conserved. Since T and µ map

to linear combinations of the Ising variables t and h, QCD behaves like an Ising system

with a locally conserved energy and magnetization. A local, upward fluctuation in the

magnetization would bias the fluctuations in the order parameter to be positive in that

neighborhood. Similarly, an upward fluctuation in the (Ising) energy would bias fluctua-

tions of either sign to be smaller. These local net modifications would persist as long as the

density of the responsible conserved quantity remained in that neighborhood. Therefore

there are correlations in the order parameter which persist as long as the conserved quan-

tities retain their local values. But conserved quantities cannot relax locally; they have

to move away, which on large length scales occurs diffusively. And the diffusion of these

conserved quantities is in turn sensitive to the order parameter fluctuations, leading to a

coupled problem. Fortunately, there is still a notion of universality; systems with second

order phase transitions in the same (static) universality class, and which have the same set

of conserved quantities, will show the same dynamical scaling behavior near the transition

point [21].

For realistic QCD the conserved quantities are the 4-momentum and baryon number.

The dynamical universal behavior is therefore the same as for the liquid-gas phase transi-

tion [28], since this system also has a conserved energy, momentum, and particle number.

Fortunately Onuki has performed a detailed study of the dynamical critical behavior of

the liquid-gas system near its critical point, focusing on the behavior of bulk viscosity [9].

Since the dynamical universalities are the same, this can be directly adapted to the QCD

case.5 As one approaches the transition point, the correlation length ξ exceeds the natural

microscopic length scale lmic (lmic = T−1 in a relativistic setting). The dynamics of the

order parameter fluctuations on a scale l−1
mic < k < ξ−1 are dissipative and slowly evolving,

5It may seem confusing that a relativistic theory, QCD, and a nonrelativistic theory, conventional fluids,

should display the same dynamical criticality. But remember that at the hydrodynamical level, all but

one degree of freedom in either system evolves dissipatively, so propagation of hydrodynamical quantities

is slow (nonrelativistic) in either case. The exception is sound waves, which propagate at a fixed velocity

cs < 1 in each theory and which turn out not to be important to critical behavior [21].
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Figure 4: (Color online) Relation between the Ising model temperature and magnetic field

directions and the directions in QCD and the liquid-gas system.

with the fluctuations changing on a time scale τk ∝ k−z, with z the dynamical critical

exponent:
∫

d3xeik·x〈ψ(x, τ)ψ(0, 0)〉 = χ(k)e−τ/τk , τk ∼ k−z , (3.1)

with ψ the order parameter and χ(k) its momentum-dependent susceptibility. In 3D Ising

systems with liquid-gas dynamical universality, z ≃ 3 [21]. Equilibration is dominated by

these slow modes.

In the Ising model, the free energy F is a function of the reduced temperature t =

(T − Tc)/Tc and the magnetic field h. Close to the transition point it behaves as

F (t, h) = Fnonsing(t, h) + t2−αFsing(t/|h
1/(β+γ)|) . (3.2)

Here Fsing is a contribution to the free energy arising from the long range (near)critical

fluctuations. Note that at small t these fluctuations give almost no contribution to the

pressure P = −F . The entropy is S = −∂F/∂t and E = ST + F . Therefore the heat

capacity Cv = ∂E/∂T behaves as Cv = Cv,nonsing +Cv,singt
−α, displaying a weak divergence

as t → 0 which arises from the long range fluctuations in the order parameter. These

fluctuations provide no pressure but dominate the heat capacity, leading to a speed of

sound ∂P/∂ǫ ≃ 0. The same is true in QCD near the critical point except that the Ising

“temperature” direction corresponds to a linear combination of temperature and chemical

potential (so the “heat capacity” referred to here is really a linear combination of heat and

baryon number capacity).

A small, rapidly applied compression will not promptly change the long-range corre-

lations of the order parameter; instead it changes the noncritical degrees of freedom, and

therefore leads to an instantaneous pressure rise ∆P ∼ ∆ǫ typical of relativistic degrees of

freedom. Then, on a time scale τ ∼ ξz, the long range fluctuations equilibrate, absorbing

almost all of ∆ǫ (since they dominate the heat capacity) and allowing the pressure to relax

to the equilibrium value. Therefore one might guess that ζ ∼ ξz. [In the next few para-

graphs, dimensions in parametric estimates are to be filled in with the appropriate power

of the intrinsic scale T .] Along the “crossover line”, meaning the map of the h = 0, t > 0

line in the Ising system, this behavior is ζ ∼ t−zν, with t the distance in the T, µ plane

from the critical point and ν the critical exponent ν ≃ 0.630 in the Ising system.
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In fact a more detailed analysis [9] shows that ζ ∼ ξz−α/ν ∼ t−zν+α. Onuki has

given a careful derivation of this result; here we give a simple intuitive explanation of

why it is true. Consider a small, rapid compression. After an intermediate amount of

time τ satisfying T−1 < τ < ξz, all modes with k > τ1/z have equilibrated; those with

smaller k (longer wavelength) remain out of equilibrium. The heat capacity represented by

the equilibrated long-range fluctuations is Cv,k<τ1/z ∼ kα/ν ∼ τα/zν . Therefore a fraction

τ−α/zν of the energy remains in the noncritical degrees of freedom so the pressure is elevated

with respect to equilibrium by ∆P ∼ ∆ǫτ−α/zν . This is true at all times τ < ξz ∼ t−zν .

The bulk viscosity is found by integrating this result over all time; it is dominated by

τ ∼ ξz, and gives ζ ∼ ξz−α/ν . Fourier transforming the τ dependence gives the spectral

function (at low frequencies); the Wightman function for frequency ω is dominated by

times τ ∼ ω−1 and is parametrically G>(ω) ∼ ω−1+α/zν . Reinserting powers of T , we find

G>(ω) ∼ T 3(ω/T )−1+α/zν [ω > ξ−zT 1−z] ; ζ ∼ T 3(ξT )z−α/ν . (3.3)

Once again, we find that the spectral function [divided by frequency] possesses a narrow

peak for ω < T . Note that the total area under the peak is finite and is essentially

determined by noncritical physics; however the height of the peak diverges as a power of

the distance to the critical point: ζ ∼ t−z/ν+α as one approaches the critical point along

the crossover line.

4. Discussion

In both of the cases where we can gain analytical insight (weak coupling and close to

the second order phase transition point), the spectral function ρ(ω)/ω has a peak at low

frequency. This peak arises because there are degrees of freedom which equilibrate very

slowly; the width of the peak corresponds to the inverse of the relaxation time towards

equilibrium. At weak coupling, all degrees of freedom exhibit slow relaxation. In this

case relaxation is slowest for high momentum quasiparticles, which dominate the height

of the peak, though low momentum fluctuations dominate the area under the peak. Near

the phase transition point, it is long range fluctuations in the order parameter which

equilibrate slowly and give rise to the peak in the spectral function. These fluctuations are

important to bulk viscosity because they dominate the heat capacity, though they are of

little importance for shear viscosity since they contribute almost nothing to the pressure.6

The bulk viscosity is determined by the dynamical critical exponent which determines the

critical slowing down of these fluctuations.

It would be too bold to extrapolate from these two examples to claim that G> or ρ/ω

always has such a low frequency peak. For instance, at 2Tc, where there are no near-critical

fluctuations but the coupling is strong, it is quite possible that all degrees of freedom

equilibrate quickly and the spectral function is smooth near zero frequency. However,

the most interesting temperature range experimentally is temperatures close to Tc, both

6Note however that it is believed that shear viscosity also shows a weak divergence at the second order

transition point for systems in the liquid-gas dynamical universality class; roughly η ∼ t−0.05 [21].
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Figure 5: Kernel K relating the (Minkowski) spectral function to the (Euclidean) unequal

τ correlation function, as a function of (Minkowski) frequency for some representative values of

Euclidean time τ . The behavior at small ω is almost τ independent.

because the plasma almost surely explores such temperatures in real heavy ion collisions

and because it is the only place where we expect the bulk viscosity to be appreciable.

The presence of a peak in ρ(ω)/ω at small ω is problematic for the reconstruction of

the bulk viscosity from unequal Euclidean time correlations measured on the lattice. The

Euclidean time correlation function7

GE(τ) ≡

∫

d3x
1

9
〈T µµ

E (x, τ)T νν
E (0, 0)〉conn (4.1)

is related to the spectral function via the integral relation

GE(τ) =

∫ ∞

−∞

dω

2π

ρ(ω)

ω
K(ω, τ) , K(ω, τ) ≡

ω cosh[ω(τ−1/2T )]

sinh(ω/2T )
. (4.2)

In principle, complete knowledge of GE(τ) as an analytic function allows for the recon-

struction of ρ(ω)/ω. However in the lattice context one only has numerical data with error

bars at a finite number of times τ , and some procedure (such as the Maximal Entropy

Method [29]) must be used to reconstruct the spectral function.

Figure 5 shows the function K(ω, τ) as a function of ω for some representative values

of τ . This figure illustrates the challenge of learning about a sharp spike in the spectral

function: all of the curves take the same value near zero frequency. In other words, each τ

gives degenerate information about a peak at small frequency — the area under the peak

— with almost no sensitivity to the shape of the peak. Therefore, details about the shape

of such a peak effectively have to be inserted as part of the fitting procedure. Meyer’s

7It is important to compute the connected correlation function on the lattice-or equivalently to subtract

off the mean value of each operator, which is equivalent at nonzero τ to rescaling the T 00 contribution until

the expectation value vanishes. We thank Derek Teaney for emphasizing this point to us.
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recent results [7] effectively assume that ρ(ω)/ω is smooth at small ω, which we have just

shown is not a good assumption, at least near a second order transition or a very weak

first order transition.

So what is the best way to estimate ζ in QCD near the transition (or crossover)

point? There are two things which we can (in principle) determine reliably from a lattice

calculation. One is the correlation length ξ for the order parameter (〈ψ̄ψ〉 for nearly chiral

2-flavor QCD). The other is the total area under the small momentum peak in the spectral

function. This can be determined by measuring GE(τ) on the lattice and fitting for the

spectral function allowing a narrow peak at the origin, with the area under the peak used

as a parameter in the fit. Call this area GR =
∫

|ω|<T ρ(ω)dω/2πω. [We expect it to be

almost as large as GE(τ/2).] Then we know parametrically that

ζ = A
GR

2T
(ξT )z−α/ν . (4.3)

What we do not know is the coefficient A. This coefficient requires dynamical informa-

tion; it represents the constant in the scaling relation between a wave number k and the

relaxation time of fluctuations at that wave number, Tτk = A(T/k)z . To get a phenomeno-

logical estimate of the bulk viscosity where (ξT ) is large, we have to make some reasonable

guess for the coefficient A. We advocate A = 1 and A = πz as two reasonable choices,

based on the assumptions that the critical regime begins at the scale T and the scale πT

respectively. Clearly there is a rather large band of uncertainty in the final determined ζ.

In summary, we have shown that in both of the cases where analytic methods can be

brought to bear (weak coupling and close to the second order transition point), the spectral

function needed to determine the bulk viscosity has a narrow peak at low frequency. At

weak coupling the peak has a height limω→0 ρ(ω)/ω ∼ g4T 4 and area
∫

dωρ(ω)/ω ∼ g7T 5;

near the critical point the area is ∼ T 5 and the height diverges as T 4(ξT )z−α/ν . This

behavior complicates the reconstruction of the spectral function from Euclidean data.
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